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Elastic properties of inhomogeneous media with chaotic structure
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The elastic properties of an inhomogeneous medium with chaotic structure were derived within the frame-
work of a fractal model using the iterative averaging approach. The predicted values of a critical index for the
bulk elastic modulus and of the Poisson ratio in the vicinity of a percolation threshold were in fair agreement
with the available experimental data for inhomogeneous composites.
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I. INTRODUCTION

The elastic properties of inhomogeneous media~IHM’s !
with chaotic structure and large differences in the proper
of components have been studied mainly on percolating
works by numerical methods@1–9#, a particular point of con-
cern being the transition of a nonbonded ensemble~NBE! of
bonds or junctions into a bonded ensemble~BE!, and vice
versa@10–14#. At the critical point~i.e., at the percolation
thresholdpc), a linking ensemble proved to form a percol
tion cluster @12–16# with properties of a self-similar en
semble~i.e., a fractal!, while the bulk elastic modulus scale
with distance topc as

K;H ~p2pc!
t ~p.pc! ~1!

~p2pc!
2s ~p,pc!, ~2!

where the critical indicest ands depend only on the spac
dimensionalityd. Equation ~1! is expected to apply for a
percolation system in the elastic regime assuming a frac
p of the bonds to have a finite elastic constant and the re
have a zero elastic constant, while Eq.~2! is for a percolation
system in the high elastic regime in whichp is a fraction of
the totally rigid bonds with infinite elastic constants, where
the rest have a finite elastic constant. In this context, po
mers, colloid systems, and composites may be cited as
relevant examples of IHM’s.

It is pertinent to recall at this point that the problem
determination of the elastic properties of a percolating n
work may be considered as completely specified, shou
Hamiltonian for a given ensemble of junctions and bonds
known. Moreover, the geometrical parameters of the
semble~such as the numbers of bonds and junctions,
distances to the most remote elements, the tortuosity,!
are assumed to be statistically specified. In this case,
Hamiltonian describing the elastic properties of a percolat
system, must meet the following requirements:~1! elastic
connectivity, i.e., the elasticity micromoduli of the lattic
should be finite atp.pc , and should vanish asp→pc10;
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~2! correct representation of the tensor properties of elasti
of the long chains forming a percolating cluster;~3! rota-
tional invariance of the Hamiltonian free states.

The Born model@10# meets the first but not the secon
requirement. This model yields a set of equations similar
Kirchhoff’s equations for electric currents in a resistance n
work; as a result, the corresponding critical indext is iden-
tical to the critical index of conductivityt.

In contrast, the Kantor-Webman~KW! Hamiltonian @3#
correctly predicts the elastic properties of percolating s
tems @4–8# in so far as it takes into account the ener
changes concomitant to variations of lattice bond angles
thus meets all the above three requirements. Using sca
analysis, KW estimated that in two dimensions~2D! t
>3.55. This turns out to be close to the lower bound tot that
they had estimated, 11nd which in 2D, with d52 andn
5 4

3 , yields t5 11
3 >3.66 ~n is the critical index for the cor-

relation length!.
One more efficient approach to the description of physi

properties of fractal structures is the position-space ren
malization group~PSRG! method@12,13#, which has been
applied to problems of conductivity@1# and of the elastic
moduli @2# of a percolating cluster. Calculations of the pro
ability of formation of the percolating cluster at the (n
21) st step,pn5R(pn21), and of the bulk elastic modulu
of a renormalized lattice were used to evaluate the crit
index of the elasticity modulust,

t5
ln lk

ln lp
, ~3!

where

lp5
dR~p!

dp U
p5pc

, ~4!

lk5
dK*

dK U
p5pc

, ~5!

andK* is the bulk modulus of the renormalized lattice.
In 2D and with a 232 self-dual PSRG cell, one obtain

n>1.43 @1# and lk>0.1617 @2#, which then yield @2# t
a-
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>3.26. Further information on the elastic properties of p
colation systems can be found in the review paper by Sah
@10#.

In this paper, we develop the method of iterative aver
ing for numerical calculations of the elastic properties
chaotic media making use of bothfractal geometryand
renormalization group transformationresults. To account for
the intrinsic tensor nature of elastic properties, we have c
sen a continuum, ‘‘blob’’ model, rather than a discrete p
colating network. This method of averaging proved high
successful in problems of the physical properties of comp
ites @15,17–21#.

II. STRUCTURAL MODEL

A lattice with a random distribution of its parameters w
chosen as an appropriate model of the chaotic structure o
IHM. Spatial microinhomogeneities~i.e., system compo-
nents! were modeled by the lattice junctions, and the int
junction bonds simulated their contacts with neighbors~Fig.
1!. Thus, in view of the dominant contribution of conta
conditions between the components to the macroscopic p
erties of an IHM, the general problem was reduced to a pr
lem of bonds.

The main ensemble of bondsV was derived by an itera
tion process in which the initial step (k50) involved treat-
ment of a finite lattice in a space of dimensiond52 or 3 and
a probabilityp0 for a bond between neighboring lattice jun
tions to be unbroken~or ‘‘colored’’ with a definite color, so
that bonds of the same color were assumed to have iden
properties!. At the next step (k51,2, . . . ,n), each bond of
the lattice was replaced by a lattice generated at the prev
step~Fig. 2!. The eventual independence of lattice propert
of the iteration numbern was recognized as the end of th
iteration process. Lattices with linear dimensionsLn ~as-
sumed to exceed by far the correlation length! generated in
this way were used to calculate the effective physical pr
erties. It is clear that the ensemble of bondsVn( l 0 ,p0) de-
rived by the iteration process is a function of both the size
the starting latticel 0 and the probabilityp0 @17–21#.

FIG. 1. Structural models of a composite:~a! a disordered clus-
ter of particles;~b! a cluster of particles with coordination numb
4; ~c! a similar cluster with coordination number 6.
03612
-
i

-
f

o-
-

s-

an

-

p-
b-

al

us
s

-

f

The formation probabilityR( l 0 ,p0) of a BE on the initial
lattice at a given concentration of unbroken bondsp5p0
depends only on geometry and on the linear lattice dim
sion l 0 . This probability can be calculated as the ratio of t
number of BE’s to the total number of unbroken bonds
the initial lattice at givenp0 and l 0 @17#.

Let P15R( l 0 ,P0) be the formation probability of the BE
at the first iteration step; then, the formation probability
the BE at the second step of transformation of a lattice of
sizel 15 l 0

2 along the rib, withP1 as the probability of a bond
to be unbroken~colored!, would be

P25R~ l 1 ,P1!, ~6!

the formation probability of the BE at the third step of tran
formation would be

P35R~ l 2 ,P2!, ~7!

and so on, up to that for thenth step,

Pn5R~ l n21 ,Pn21!, ~8!

The trajectory of the iteration process at thenth step ends
at a fixed point 0 or 1~Fig. 3!,

Pn5H 1 if R~ l 0 ,P0!.P*

0 if R~ l 0 ,P0!,P* .
~9!

The nontrivial fixed pointP* is defined by the equation@22#

P* 5R~ l 0 ,P* !. ~10!

In the vicinity of the critical~fixed! point P* cluster proper-
ties such as, e.g., the correlation lengthj or densityP, ex-
hibit singular dependencies onDp5p02p* ,

j~p!;uDpun, ~11!

FIG. 2. The idea of the PSRG on a square lattice withl 052:
p05~a!1 and~b! 0.75 at the fourth iteration step.
0-2
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P~p0!;Dpb. ~12!

The corresponding critical indices for a percolating clus
are @10,12# n5 4

3 and b5 5
36 (d52), and n>0.88 andb

>0.4(d53).
The percolating cluster densityP(p0) scales with sizeL as

P~p0!'La,

a5d2df . ~13!

Percolation thresholdspc , critical indicesn, b, and a,
fractal dimensionalitiesdf were evaluated@17# for FG mod-
els of IHM’s built on various initial rectangular lattices
32, 333, 434, 535, 636, 938, and 939 (d52), and
33333 (d53). The geometrical parameters of the deriv
fractal ensembles at the percolation thresholdpc proved to be
identical to those for a percolating cluster, provided the
mension of the starting lattice wasl 0.8(d52) and l 0
.3(d53).

The effective elastic properties of an IHM (d53) were
calculated making use of the functionR(p) for a 33333
lattice of sizel 053 ~Fig. 3!.

III. ELASTIC PROPERTIES

Let a two-phase system be characterized by the parti
function

P0~C!5~12p0!d~C2C2
~0!!1p0d~C2C1

~0!!, ~14!

whered(x) is the Dirac function,p0 is the probability for a
given local region to have a propertyC1

(0) , and 12p0 is the
probability to have a propertyC2

(0) . The density function
after k steps of the RG theory would be

Pk~C!5~12pk!d~C2C2
~k!!1pkd~C2C1

~k!!, ~15!

FIG. 3. Probability of BE formation as a function of concentr
tion of nonbroken bonds (l 053, d53).
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wherePk5R(pk21 ,Lk21) is the BE number density define
as the ratio of the number of BE’s to the total number
random choices~‘‘colors’’ ! on a square lattice.

Generally speaking, the effective properties of a structu
model can be calculated with the following scheme: eval
tion of properties of different configurations→averaging
out→transfer to the next step@17,18#. The rather cumber-
some calculations above in the starting step may be avo
by use of an appropriate approximate method. The basic
of the latter is that, of all configurations that are generated
random choices of bonds on a lattice, only two types
ensemble of bond configurations are selected, namely,
and NBE. The other approximation is to switch over from
discrete model~on a lattice! to a continuous model, assumin
that BE’s and NBE’s behave as a continuum within the co
text of the ‘‘blob’’ model ~Fig. 4!.

Thus, at each iteration step the structures of BE’s a
NBE’s are modeled by composite ‘‘blobs’’ in which the B
is treated as a continuous medium of an ‘‘elastic’’ phase w
an embedded sphere~blob! of a ‘‘soft’’ phase @Fig. 4~a!#,
whereas the NBE is represented by a continuous medium
a ‘‘soft’’ phase with an embedded sphere~blob! of an ‘‘elas-
tic’’ phase@Fig. 4~b!#. The effective properties~i.e., the bulk
modulusK and the shear modulusm! of the BE and NBE
may be calculated by standard formulas of the physics
composite materials@15# accounting for the tensor nature o
elastic properties according to the following scheme:~i! defi-
nition of the functionR(p,l ) for the fractal model~on a
lattice!; ~2! calculation of the BE concentration and of th
elastic properties of the ‘‘blob’’ model at thekth iteration
step by the following formulas, respectively:

pk5R~pk21 ,l !, ~16!

Cc
~k!5 f 1~Cc

~k21! ,Cn
~k! ,pk21! for the BE, ~17!

Cc
~k!5 f 2~Cc

~k21! ,Cn
~k! ,pk21!, for the NBE, ~18!

where functionsf 1 , f 2 depend on the structural model and o
the elastic propertiesCc

(k21) ,Cn
(k21) of the BE and NBE at

the (k21)st step. Thus, the effective properties of an IH
should conform to the following conditions:

FIG. 4. Blob models of the BE~a! and NBE~b!.
0-3
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Cc
~k!.Ceff.Cn

~k! , lim
k→`

Cc
~k!5 lim

k→`

Cn
~k!5Ceff . ~19!

Calculation of the elastic properties of fractal structu
by the above scheme implies that the functionR(p) is speci-
fied analytically. This can be done, provided that fractal
sembles are built from initial~‘‘nucleating’’! lattices of a
small size (l 0,5 for d52), whereas for larger size
( l 0.5 for d52, andl 0.3 for d53) the analytical solution
for R(p) is too cumbersome, and it can be solved only n
merically @13#.

Approximate numerical solutions of the functionR(p) for
a 23232 lattice proved to be compatible with the functio

R~p!5p2~418p214p2240p3116p41288p52655p6

1672p72376p81112p9214p10!, ~20!

which was derived elsewhere@1#. According to Eq.~20!, the
NBE→BE crossover should occur at the percolation thre
old ~i.e., critical point! pc>0.2085.

The elastic properties of a percolating system were ca
lated by our method of step-by-step~iterative! averaging out
@15#, substitutingp for the volume fraction of a stiff, elastic
componentw into the Hashin-Shtrikman formulas@25,26# for
the structural model of a sphere embedded in a homogen
continuum~Fig. 4!. In this case, the bulk and shear elas
moduli for the BE at the (i 11)st iteration step may be ca
culated as

Kc
~ i 11!5Kc

~ i !1
~12pi !~Kn

~ i !2Kc
~ i !!

11piac
~ i !~Kn

~ i !2Kc
~ i !!

, ~21!

mc
~ i 11!5mc

~ i 11!1
~12pi !~mn

~ i !2mc
~ i !!

11pibc
~ i !~mn

~ i !2mc
~ i !!

, ~22!

where

ac
~ i !5

3

3Kc
~ i !14mc

~ i ! , bc
~ i !5

6~Kc
~ i !12mc

~ i !!

5mc
~ i !~3Kc

~ i !14mc
~ i !!

; ~23!

Kc
05K1 , mc

05m1 , and Kn
05K2 , mn

05m2 are the bulk and
shear elastic moduli of elastic and soft phases, respectiv

The elastic moduliKn
( i 11) andmn

( i 11) for the NBE may be
calculated from the above formulas~21!–~23! by making the
substitutionsc↔n andpi↔(12pi).

IV. RESULTS

As can be seen from the plots of log10m @Fig. 5~a!# and
log10K @Fig. 5~b!# of the fractal ensemble versus the iterati
step numbern, all these elastic properties behave like fract
before an eventual leveling off. The latter is obviously as
ciated with the upper limit to a fractal-like asymptotic
above which the elastic properties of a system are no lon
dependent on the scale~i.e., on the iteration number!.

Plots of log10K vs p ~i.e., the concentration of a stif
component! shown in Fig. 6 can be used to estimate critic
indicest ~for the elastic regime! and s ~for the high elastic
03612
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regime! defined by Eqs.~1! and~2!. The corresponding loga
rithmic derivatives

t5 lim
p→pc10

z~p!, ~24!

s5 lim
p→pc20

z~p!, ~25!

where

z~p!5 lim
DP→0

D~ log10K !

D@ log10~pc2p!#
,

are plotted as functions of the concentrationp for some
K1 /m15K2 /m2 and for a few values of the logarithm of th
ratio of the bulk elastic moduli of constituent phases,a
5 log10(K1 /K2), in Figs. 7~a! and 7~b!. It can be seen there
that when the ratioK1 /m1 is far from unity then to obtain
correct values for the indicest ands one needs to use mate
rials whose elastic properties differ by more than ten ord
of magnitude.

FIG. 5. Semilogarithmic dependencies of shear elasticity mo
lus ~a! and bulk elasticity modulus~b! on the iteration numbern for
p50.2088~1!, 0.2092~2!, and 0.2098~3!.
0-4
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The value 3.20060.002 obtained for the critical indext
that describes the singular behavior of the bulk modulusK in
the vicinity of the critical pointpc10 is by about 15%
smaller than that obtained ford53 by Sahimi and Arbabi
@8#, t53.7560.11. We should add that ford52 Zabolitzky,
Bergman, and Stauffer@27# obtainedt53.9660.04; the re-
sults obtained in Refs.@8#, @27# are in good agreement wit
the relation proposed by Sahimi@28#, t5t12n, wheret is
the critical exponent of the conductivity of percolation ne
works.

The values of the critical indexs for the superelastic re
gime (p,pc) were determined by using very accurate ari
metic ~of a few hundred digits of accuracy! for various ratios
of K1 /m1 andK2 /m2 with the requirement thatK2 /K1→0
and m2 /m1→0; in all cases we obtaineds50.629 62
60.000 02, which is in excellent agreement with the res
obtained ford53 by Sahimi and Arbabi@8,29# (s50.65
60.03); for d52, the most reliable estimate ofs is 1.24
60.03 @8,29#.

In the vicinity of the percolation thresholdpc the ratio of
bulk modulus to shear modulus,K/m, tends to a limiting
value of 4

3 @Fig. 6~b!#; this result was verified with accurac
better than 20 digits. This is consistent with the Bergman
Kantor resultK/m54/d at p→pc @4#.

As can be seen from plots of the effective Poisson ra
nP vs ‘‘stiff’’ phase concentrationp at different values of the

FIG. 6. Dependencies onp of ~a! log10 K for K1 /m15K2 /m2

55 ~1! and 0.025~2!, and ~b! the ratioK/m for K1 /m15K2 /m2

50.025~1!, 0.75 ~2!, and 5~3!; a5 log10(K2 /K1).
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FIG. 7. ~a! Logarithmic derivativez(p) plotted as a function of
the concentrationp for a few values of the ratioK1 /m15K2 /m2

55 ~dots!, 1 ~open circles!, and 1/40~crosses!. The dashed line
indicates the percolation thresholdpc . ~b! z(p) as a function of the
logarithm of the distance from the percolation threshold
K1 /m15K2 /m251/40 and for very small values of the ratio of th
bulk elasticity modulia5 log10(K2 /K1)5225,250,2100,2200;
the dashed lines correspond to the estimated values oft and s,
respectively.

FIG. 8. Dependence of the effective Poisson rationP on the
volume concentration of the ‘‘stiff’’ componentp for different val-
ues ofa5 log10(K2 /K1) for the Poisson ratios of the componen
nP15nP250 ~curves belown50.2), andnP15nP250.4 ~curves
aboven50.2).
0-5
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ratio a5 log10(K2 /K1) and for the values of Poisson ratios
each phase spanning the interval from 0 to 0.4~Fig. 8!, nP
51

5 ~with accuracy better than 20 digits! at the percolation
threshold~in the limit K2 /K1→0).

It should be emphasized that our method of calculation
the effective elastic properties of IHM’s with chaotic stru
tures can be applied for the analysis of structure-prop
relationships of both model and real composites, provid
the difference between the intrinsic properties of constitu
phases is finite~i.e.,a50). The quality of fits of the relevan
experimental data@30# to theoretical predictions can be a
sessed from two representative plots, shear modulus vs c
position for butadiene-styrene block copolymers~Fig. 9!, and
relative Young’s modulus vs composition for a polyvin
chloride–ethylacrylate rubber binary blend@15# ~Fig. 10!.

V. CONCLUSIONS

~1! The proposed method of construction of a structu
model of a chaotic medium and the step-by-step~iterative!
approach to calculation of elastic properties derived the

FIG. 9. Dependence of shear elastic modulus on the volu
concentration of styrene for the butadiene-styrene block copolym
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from proved consistent with the results of numerical mod
ing of elastic properties of percolating systems. Thus, t
method can be used to predict the elastic properties of b
percolating systems and real composites, provided the dif
ence between the properties of constituent phases is fini

~2! The critical index for the bulk elasticity modulus i
the elastic regime (p.pc) was calculated ast53.200
60.002. The corresponding critical index in the high elas
regime (p,pc) was s50.629 6260.000 02. The ratio of
bulk modulus to shear modulus was calculated asK/m5 4

3 on
the approach to the percolation thresholdpc , whereas the
Poisson ratio of a percolating system in the vicinity ofpc
proved independent of the elastic properties of constitu
phases and was calculated asnP5 1

5 at pc .
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