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Elastic properties of inhomogeneous media with chaotic structure
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The elastic properties of an inhomogeneous medium with chaotic structure were derived within the frame-
work of a fractal model using the iterative averaging approach. The predicted values of a critical index for the
bulk elastic modulus and of the Poisson ratio in the vicinity of a percolation threshold were in fair agreement
with the available experimental data for inhomogeneous composites.
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I. INTRODUCTION (2) correct representation of the tensor properties of elasticity
of the long chains forming a percolating clustés) rota-
The elastic properties of inhomogeneous megtiéM’s)  tional invariance of the Hamiltonian free states.

with chaotic structure and large differences in the properties The Born mode[10] meets the first but not the second
of components have been studied mainly on percolating netequirement. This model yields a set of equations similar to
works by numerical method4 -9, a particular point of con-  Kirchhoff's equations for electric currents in a resistance net-
cern being the transition of a nonbonded enseniiBE) of  work; as a result, the corresponding critical indebs iden-
bonds or junctions into a bonded ensemii), and vice tical to the critical index of conductivity.
versa[10-14. At the critical point(i.e., at the percolation In contrast, the Kantor-WebmaiKW) Hamiltonian[3]
thresholdp,), a linking ensemble proved to form a percola- correctly predicts the elastic properties of percolating sys-
tion cluster[12-14 with properties of a self-similar en- tems[4-8] in so far as it takes into account the energy
semble(i.e., a fractal, while the bulk elastic modulus scaled changes concomitant to variations of lattice bond angles and

with distance top. as thus meets all the above three requirements. Using scaling
analysis, KW estimated that in two dimensiof@D) 7
(P—=Pc)™  (P>Pe) (1)  =3.55. This turns out to be close to the lower boune that
- (P—pPo) % (P<po), (2) they had estimated, 4vd which in 2D, withd=2 andv

=3, yields 7=3=3.66 (v is the critical index for the cor-
where the critical indices and s depend only on the space relation length.
dimensionalityd. Equation(1) is expected to apply for a One more efficient approach to the description of physical
percolation system in the elastic regime assuming a fractioproperties of fractal structures is the position-space renor-
p of the bonds to have a finite elastic constant and the rest tamalization group(PSRG method[12,13, which has been
have a zero elastic constant, while E2).is for a percolation applied to problems of conductivitjl] and of the elastic
system in the high elastic regime in whiphis a fraction of moduli[2] of a percolating cluster. Calculations of the prob-
the totally rigid bonds with infinite elastic constants, whereasability of formation of the percolating cluster at the (
the rest have a finite elastic constant. In this context, poly— 1) st step,p,=R(p,-1), and of the bulk elastic modulus
mers, colloid systems, and composites may be cited as thef a renormalized lattice were used to evaluate the critical

relevant examples of IHM'’s. index of the elasticity modulus,
It is pertinent to recall at this point that the problem of
determination of the elastic properties of a percolating net- In Ny
work may be considered as completely specified, should a = m ©)

Hamiltonian for a given ensemble of junctions and bonds be
known. Moreover, the geometrical parameters of the engpere
semble(such as the numbers of bonds and junctions, the

distances to the most remote elements, the tortuosity), etc. dR(p)
are assumed to be statistically specified. In this case, the = ) 4)
Hamiltonian describing the elastic properties of a percolation dp P=Pp,
system, must meet the following requirements) elastic
connectivity, i.e., the elasticity micromoduli of the lattice dK*
should be finite ap>p., and should vanish gs—p.+0; )\":W , (5)
P=p,
*Email address: novikov@te.net.ua andK* is the bulk modulus of the renormalized lattice.

'Permanent address: Institute of Macromolecular Chemistry, Na- In 2D and with a 2<2 self-dual PSRG cell, one obtains
tional Academy of Sciences of Ukraine, 263160 Kyiv, Ukraine.  v=1.43 [1] and A\, =0.1617[2], which then yield[2] 7
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FIG. 1. Structural models of a composite) a disordered clus- E%
ter of particles;(b) a cluster of particles with coordination number )

4; (c) a similar cluster with coordination number 6. EFED_{%
LﬁD$E$

D:Ew
=3.26. Further information on the elastic properties of per- ; Eh‘
colation systems can be found in the review paper by Sahimi £ 2. The idea of the PSRG on a square lattice Wijta2:
[10]. po= (@)1 and(b) 0.75 at the fourth iteration step.

In this paper, we develop the method of iterative averag-
ing fo_r nume_zrical C'_cllculations of the elastic properties of The formation probabilityR(l ,po) of a BE on the initial
chaotic media making use of botiactal geometryand  |attice at a given concentration of unbroken bonms p,
renormalization group transformatioresults. To account for - gepends only on geometry and on the linear lattice dimen-
the intrinsic tensor nature of elastic properties, we have chosjon|,. This probability can be calculated as the ratio of the
sen a continuum, “blob™” model, rather than a discrete per-yymber of BE's to the total number of unbroken bonds on
colating network. This method of averaging proved highlyhe injtial lattice at giverp, andl [17].

_successful in problems of the physical properties of compos- | gt P,=R(ly,P,) be the formation probability of the BE
ites[15,17-21. at the first iteration step; then, the formation probability of
the BE at the second step of transformation of a lattice of the
Il STRUCTURAL MODEL sizel1=I(2) along the rib, withP, as the probability of a bond
to be unbroker(colored, would be

A lattice with a random distribution of its parameters was
chosen as an appropriate model of the chaotic structure of an P2=R(l1,Py), (6)
IHM. Spatial microinhomogeneitiegi.e., system compo-
nent3 were modeled by the lattice junctions, and the inter-
junction bonds simulated their contacts with neighb@iig.

1). Thus, in view of the dominant contribution of contact Ps=R(l,,P,), 7)
conditions between the components to the macroscopic prop-

erties of an IHM, the general problem was reduced to a proband so on, up to that for theth step,

lem of bonds.

The main ensemble of bond® was derived by an itera- Pn=R(ly-1,Pn-1), 8
tion process in which the initial stegk€0) involved treat-
ment of a finite lattice in a space of dimensio# 2 or 3 and
a probabilityp, for a bond between neighboring lattice junc-

g &
9,
b

iE

the formation probability of the BE at the third step of trans-
formation would be

The trajectory of the iteration process at tité step ends
at a fixed point 0 or IFig. 3),

tions to be unbrokefior “colored” with a definite color, so 1 if R(lg,Pg)>P*
that bonds of the same color were assumed to have identical P,= ) 00 . (9)
propertieg. At the next stepK=1,2, ... n), each bond of 0 if R(lg,Po)<P*.

the lattice was replaced by a lattice generated at the previo L e i .
step(Fig. 2). The eventual independence of lattice propertiegfhe nontrivial fixed poinP™ is defined by the equatici22]
of the iteration numben was recognized as the end of the P* =R(l4,P*) (10)
iteration process. Lattices with linear dimensiong (as- o '

sumed to exceed by far the correlation lengglenerated in  |n the vicinity of the critical(fixed) point P* cluster proper-
this way were used to calculate the effective physical propties such as, e.g., the correlation lengtor densityP, ex-

erties. It is clear that the ensemble of bordig(lo,pg) de-  hibit singular dependencies dp=p,— p*,
rived by the iteration process is a function of both the size of

the starting latticd, and the probabilityp, [17—-21. &(p)~|Ap|?, (1)
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FIG. 3. Probability of BE formation as a function of concentra-
tion of nonbroken bondsl {=3, d=3).
P(po)~Ap~. (12
The corresponding critical indices for a percolating cluste
are[10,12 v=3 and B=% (d=2), and »=0.88 andp
=0.4(d=3).
The percolating cluster densi(py) scales with sizé. as

P(po)~L*,

a=d—d;. (13
Percolation thresholdg., critical indicesv, B, and «,
fractal dimensionalitiesl; were evaluatedl17] for FG mod-
els of IHM’s built on various initial rectangular lattices 2
X2, 3X3, 4X4, 5X5, 6X6, 9x8, and &9 (d=2), and
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FIG. 4. Blob models of the BEa) and NBE(b).

whereP,=R(pyx_1,Lk_1) is the BE number density defined
as the ratio of the number of BE’s to the total number of
random choiceg$ colors” ) on a square lattice.

Generally speaking, the effective properties of a structural
model can be calculated with the following scheme: evalua-
tion of properties of different configurationsaveraging

jout—transfer to the next stefl7,18. The rather cumber-

some calculations above in the starting step may be avoided
by use of an appropriate approximate method. The basic idea
of the latter is that, of all configurations that are generated by
random choices of bonds on a lattice, only two types of
ensemble of bond configurations are selected, namely, BE
and NBE. The other approximation is to switch over from a
discrete mode(lon a lattice to a continuous model, assuming
that BE's and NBE’s behave as a continuum within the con-
text of the “blob” model (Fig. 4).

Thus, at each iteration step the structures of BE's and
NBE's are modeled by composite “blobs” in which the BE
is treated as a continuous medium of an “elastic” phase with
an embedded spheiblob) of a “soft” phase [Fig. 4(a)],

3X3X3(d=3). The geometrical parameters of the derivedwhereas the NBE is represented by a continuous medium of

fractal ensembles at the percolation threshmlgroved to be

a “soft” phase with an embedded sphdi#ob) of an “elas-

identical to those for a percolating cluster, provided the di-tic” phase[Fig. 4b)]. The effective propertie§.e., the bulk

mension of the starting lattice wag>8(d=2) and |,
>3(d=3).

The effective elastic properties of an IHM£€3) were
calculated making use of the functid®(p) for a 3X3X3
lattice of sizel ;=3 (Fig. 3).

Ill. ELASTIC PROPERTIES

modulusK and the shear modulys) of the BE and NBE
may be calculated by standard formulas of the physics of
composite materialgl5] accounting for the tensor nature of
elastic properties according to the following schefedefi-
nition of the functionR(p,l) for the fractal model(on a
lattice); (2) calculation of the BE concentration and of the
elastic properties of the “blob” model at thieth iteration
step by the following formulas, respectively:

Let a two-phase system be characterized by the partition

function

Po(C)=(1~Po) 8(C—C{) +pod(C—CY”), (14
where §(x) is the Dirac functionpy is the probability for a
given local region to have a proper®{”, and 1- p, is the
probability to have a propertg?). The density function
afterk steps of the RG theory would be

P(C)=(1-p)d(C—-CY¥)+ps(C—CY), (15

P=R(p 1., (16)
C(Ck): fl(C(ck_l) ,Cgk) ,Pk—1) for the BE, (17)
Cék): fz(c(ck_l) ,Cgk) ,Px_1), for the NBE, (18

where functiond ;,f, depend on the structural model and on
the elastic propertie€* 2 ,Ck~Y of the BE and NBE at
the (k—1)st step. Thus, the effective properties of an IHM
should conform to the following conditions:
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Co>Ce>CP, limcM=limcM¥=Cy. (19 0-

Kk— o0 K— o0

Calculation of the elastic properties of fractal structures 51
by the above scheme implies that the functiR(p) is speci-
fied analytically. This can be done, provided that fractal en- =
sembles are built from initia(*“nucleating”) lattices of a A-101
small size (,<5 for d=2), whereas for larger sizes 33 K
(1o>5 for d=2, andl ;>3 for d=3) the analytical solution g
for R(p) is too cumbersome, and it can be solved only nu-
merically [13]. .

Approximate numerical solutions of the functi®{p) for 20 z
a 2x2X2 lattice proved to be compatible with the function 1
R(p)=p*(4+8p—14p°—40p°+ 16p*+288°— 655° 25— e
7 8 9 1 0 2 4 6 8 10 12 14 16
+6720"—376p%+ 112p°— 14p9), (20 @) n
O .

which was derived elsewhef&]. According to Eq(20), the
NBE—BE crossover should occur at the percolation thresh- ]
old (i.e., critical poinj p,=0.2085. 5
The elastic properties of a percolating system were calcu-

lated by our method of step-by-stéiperative) averaging out ~
[15], substitutingp for the volume fraction of a stiff, elastic i-lO ]
componentp into the Hashin-Shtrikman formul§25,26] for 5

the structural model of a sphere embedded in a homogeneous  —
continuum(Fig. 4). In this case, the bulk and shear elastic
moduli for the BE at thei(+ 1)st iteration step may be cal- 7
culated as 20 4

(1-p) (KR —KE)

K(I+l): K(I)+ I i i ’ (21) 25 4 - T T Y T T 7 1
’ © O Lpag (Ky' =K 0 2 4 6 8 10 12 14 16
(0 ® !
- 4 1-p)(mn — pe))
pld V= 04Dy ( p.(i),un(i) MC(D , (22) FIG. 5. Semilogarithmic dependencies of shear elasticity modu-
1+pibe (un’—pe’) lus (a) and bulk elasticity moduluéb) on the iteration numben for
p=0.2088(1), 0.2092(2), and 0.20983).
where
3 6(KD+2,0)) regime defined by Eqs(1) and(2). The corresponding loga-
A= > i 2P TEHe) | (23  rithmic derivatives
©UBK{+Au” 0 Bul (3K +4u))”
= lim z(p), (29
KO=K,, ud=pu,, andK2=K,, ul=pu, are the bulk and p—pct0
shear elastic moduli of elastic and soft phases, respectively. .
The elastic modulk{ "% and (Y for the NBE may be s= lim z(p), (25
calculated from the above formuléa1)—(23) by making the P=pe=0
substitutionsc—n and p;< (1—p;). where
IV. RESULTS A(logoK)
. z(p)= lim S,
As can be seen from the plots of lgg: [Fig. 5@a)] and ap—o A[10gio(pPc—p)]

log;oK [Fig. 5(b)] of the fractal ensemble versus the iteration
step numben, all these elastic properties behave like fractalsare plotted as functions of the concentratipnfor some
before an eventual leveling off. The latter is obviously assoK,/u,=K,/u, and for a few values of the logarithm of the
ciated with the upper limit to a fractal-like asymptotics, ratio of the bulk elastic moduli of constituent phases,
above which the elastic properties of a system are no longe#log;o(K/K5), in Figs. 1@ and 7b). It can be seen there
dependent on the scalee., on the iteration numbgr that when the ratid<, /x4 is far from unity then to obtain
Plots of logoK vs p (i.e., the concentration of a stiff correct values for the indicesands one needs to use mate-
componentshown in Fig. 6 can be used to estimate criticalrials whose elastic properties differ by more than ten orders
indices 7 (for the elastic regimeands (for the high elastic of magnitude.
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FIG. 6. Dependencies op of (&) log;oK for K /u=Ky/u,
=5 (1) and 0.025(2), and (b) the ratioK/u for Ky /u1=Ky/u,
=0.025(1), 0.75(2), and 5(3); a=l0g;o(K,/Ky).

The value 3.20€ 0.002 obtained for the critical index
that describes the singular behavior of the bulk mod#lus
the vicinity of the critical pointp.+0 is by about 15%
smaller than that obtained fat=3 by Sahimi and Arbabi
[8], 7=3.75=0.11. We should add that far=2 Zabolitzky,
Bergman, and Stauff¢27] obtainedr=3.96* 0.04; the re-
sults obtained in Ref48], [27] are in good agreement with
the relation proposed by Sahif28], 7=t+2», wheret is
the critical exponent of the conductivity of percolation net-
works.

The values of the critical indeg for the superelastic re-

gime (p<p.) were determined by using very accurate arith-

metic (of a few hundred digits of accuracfor various ratios
of Ky /u, andK,/u, with the requirement thak, /K;—0
and u,/u1—0; in all cases we obtained=0.629 62

+0.000 02, which is in excellent agreement with the result

obtained ford=3 by Sahimi and Arbab[8,29 (s=0.65
+0.03); ford=2, the most reliable estimate afis 1.24
+0.03[8,29.

In the vicinity of the percolation thresholdl, the ratio of
bulk modulus to shear modulu&/u, tends to a limiting
value of 4 [Fig. 6(b)]; this result was verified with accuracy
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FIG. 7. (a) Logarithmic derivativez(p) plotted as a function of
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the dashed lines correspond to the estimated values aid s,
respectively.
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FIG. 8. Dependence of the effective Poisson ratjoon the

better than 20 digits. This is consistent with the Bergman angolume concentration of the “stiff” component for different val-

Kantor resultk/u=4/d at p—p. [4].

ues ofa=log,o(K,/K,) for the Poisson ratios of the components

As can be seen from plots of the effective Poisson ratioy,; = vp,=0 (curves belowr=0.2), andvp;=rp,=0.4 (curves

vp Vs “stiff” phase concentratiom at different values of the

abover=0.2).

036120-5



NOVIKOV, WOJCIECHOWSKI, BELOV, AND PRIVALKO PHYSICAL REVIEW E63 036120

0.0
)
2.0 o
(@]
“F a0 . i
~—
:;7 :QE o}
@
= 1.0 4
2.0
y o
L
0.0 T 1
3.0 ' ' ‘ ' ' 0.0 0.5 1.0
0.0 0.2 0.4 0.6 0.8 1.0

p
p

FIG. 9. Dependence of shear elastic modulus on the volume FIG. 10. Dependence of Young’s modulus on the volume con-

concentration of styrene for the butadiene-styrene block copolymenc.emraﬁo,n of poly vinyl chlorid¢PVC) for the PVC—ethyl acrylate
rubber binary blend.

ratioa=log,o(K/K,) and for the values of Poisson ratios of from proved consistent with the results of numerical model-
each phase spanning the interval from O to 4. 8), vp  ing of elastic properties of percolating systems. Thus, this
=3 (with accuracy better than 20 digitst the percolation method can be used to predict the elastic properties of both
threshold(in the limit K,/K;—0). ercolating systems and real composites, provided the differ-
It should be emphasized that our method of calculation okence between the properties of constituent phases is finite.
the effective elastic properties of IHM’s with chaotic struc-  (2) The critical index for the bulk elasticity modulus in
tures can be applied for the analysis of structure-propertyhe elastic regime {>p.) was calculated asr=3.200
relationships of both model and real composites, provided-0.002. The corresponding critical index in the high elastic
the difference between the intrinsic properties of constituentegime (p<p,) was s=0.62962-0.00002. The ratio of
phases is f|n|té|e, a= 0) . The qua“ty of fits of the relevant bulk modulus to shear modulus was Ca|cu|ate&&&:% on
experimental dat§30] to theoretical predictions can be as- the approach to the percolation threshgid, whereas the
sessed from two representative plots, shear modulus vs corpyjisson ratio of a percolating system in the vicinity mf
position for butadiene-styrene block copolyméfsg. 9), and  proved independent of the elastic properties of constituent

relative Young’s modulus vs composition for a polyvinyl phases and was calculatedgs= % at p..
chloride—ethylacrylate rubber binary bleftb] (Fig. 10.
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